Module recsys.types

Expand source code Browse git
from enum import Enum
from typing import Dict

import torch


class ModelType(str, Enum):
    MANY_TO_ONE = 1
    MANY_TO_MANY = 2


class WeightType(str, Enum):
    UNWEIGHTED = 1
    UNIFORM = 2
    CUMSUM_CORRECTED = 3


class RecurrentType(str, Enum):
    GRU = 1
    LSTM = 2


class FeatureProjectionType(str, Enum):
    CONCATENATION = 1
    MULTIPLICATION = 2


class OptimizerType(str, Enum):
    ADAM = 1
    ADAMW = 2


BatchType = Dict[str, torch.Tensor]

Classes

class FeatureProjectionType (value, names=None, *, module=None, qualname=None, type=None, start=1)

An enumeration.

Expand source code Browse git
class FeatureProjectionType(str, Enum):
    CONCATENATION = 1
    MULTIPLICATION = 2

Ancestors

  • builtins.str
  • enum.Enum

Class variables

var CONCATENATION
var MULTIPLICATION
class ModelType (value, names=None, *, module=None, qualname=None, type=None, start=1)

An enumeration.

Expand source code Browse git
class ModelType(str, Enum):
    MANY_TO_ONE = 1
    MANY_TO_MANY = 2

Ancestors

  • builtins.str
  • enum.Enum

Class variables

var MANY_TO_MANY
var MANY_TO_ONE
class OptimizerType (value, names=None, *, module=None, qualname=None, type=None, start=1)

An enumeration.

Expand source code Browse git
class OptimizerType(str, Enum):
    ADAM = 1
    ADAMW = 2

Ancestors

  • builtins.str
  • enum.Enum

Class variables

var ADAM
var ADAMW
class RecurrentType (value, names=None, *, module=None, qualname=None, type=None, start=1)

An enumeration.

Expand source code Browse git
class RecurrentType(str, Enum):
    GRU = 1
    LSTM = 2

Ancestors

  • builtins.str
  • enum.Enum

Class variables

var GRU
var LSTM
class WeightType (value, names=None, *, module=None, qualname=None, type=None, start=1)

An enumeration.

Expand source code Browse git
class WeightType(str, Enum):
    UNWEIGHTED = 1
    UNIFORM = 2
    CUMSUM_CORRECTED = 3

Ancestors

  • builtins.str
  • enum.Enum

Class variables

var CUMSUM_CORRECTED
var UNIFORM
var UNWEIGHTED