Package recsys
Booking.com Challenge - WebTour 2021
ACM WSDM workshop
4th place solution for Booking.com's next destination recommendation challenge.
Documentation | Github | Colab
Recommended Citation
@inproceedings{DOI_CODE,
author = {Baigorria Alonso, Martín},
booktitle = {ACM WSDM Workshop on Web Tourism (WSDM WebTour’21)},
howpublished = {\url{https://mbaigorria.github.io/booking-challenge-2021-recsys}},
title = {Data Augmentation Using Many-To-Many RNNs for Session-Aware Recommender Systems},
year = {2021}
}
Model
My solution is a Sequence Aware Recommender System implemented with an RNN based Many-To-Many architecture.

Setting up resources
To set up the environment with all the datasets and resources, you must first call:
bash get_resources.sh
Installing and running package
You can install the package in development mode and get our submission.
pip install -e .
python3 -m recsys.src.submission
Running Docker image
You must first install nvidia-docker to run the Docker image with a GPU.
Then, install the base image we use:
docker pull nvidia/cuda
Finally, build and run our image:
docker build -t booking_challenge .
docker run --runtime=nvidia --ipc=host --mount source=${path_to_resources},target=/home/user/resources,type=bind recsys
Expand source code Browse git
"""
.. include:: ../README.md
"""
import logging
from recsys.utils import check_device
logging.getLogger().setLevel(logging.INFO)
check_device()
Sub-modules
recsys.configrecsys.datasetrecsys.dataset_loaderrecsys.encodersrecsys.experimentsrecsys.modelrecsys.model_selectionrecsys.model_trainrecsys.pathsrecsys.plotrecsys.submissionrecsys.typesrecsys.utils